Máté Vass, M.Sc.

Researcher

Address
Ruhr-Uni­ver­si­tät Bo­chum
Fakultät für Elektrotechnik und Informationstechnik
Angewandte Elektrodynamik und Plasmatechnik
Uni­ver­si­täts­stra­ße 150
D-44801 Bo­chum, Germany

Room
ID 1/114

Phone
+49 234 32 22766

Email
vass(at)aept.rub.de


Publications

Vass, M., Schulenberg, D., Donkó, Z., Hartmann, P., Steuer, D., Böke, M., Schulz-von Der Gathen, V., Korolov, I., Mussenbrock, T., & Schulze, J. (2024). Energy efficiency of reactive species generation in radio frequency atmospheric pressure plasma jets driven by tailored voltage waveforms in a He/O2 mixture. Plasma Sources Science and Technology, 33(11), 11LT01. https://doi.org/10.1088/1361-6595/ad8ae7 Cite
Tian, C.-B., Wang, L., Vass, M., Wang, X.-K., Dong, W., Song, Y.-H., Wang, Y.-N., & Schulze, J. (2024). The detachment-induced mode in electronegative capacitively coupled radio-frequency plasmas. Plasma Sources Science and Technology, 33(7), 075008. https://doi.org/10.1088/1361-6595/ad5df8 Cite
Masheyeva, R., Vass, M., Wang, X.-K., Liu, Y.-X., Derzsi, A., Hartmann, P., Schulze, J., & Donkó, Z. (2024). Electron power absorption in CF 4 capacitively coupled RF plasmas operated in the striation mode. Plasma Sources Science and Technology, 33(4), 045019. https://doi.org/10.1088/1361-6595/ad3c69 Cite
Derzsi, A., Vass, M., Masheyeva, R., Horváth, B., Donkó, Z., & Hartmann, P. (2024). Frequency-dependent electron power absorption mode transitions in capacitively coupled argon-oxygen plasmas. Plasma Sources Science and Technology, 33(2), 025005. https://doi.org/10.1088/1361-6595/ad1fd5 Cite
Schulenberg, D. A., Vass, M., Klich, M., Donkó, Z., Klotz, J., Bibinov, N., Mussenbrock, T., & Schulze, J. (2024). Mode Transition Induced by Gas Heating Along the Discharge Channel in Capacitively Coupled Atmospheric Pressure Micro Plasma Jets. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10444-6 Cite
Vass, M., Schulenberg, D., Donkó, Z., Korolov, I., Hartmann, P., Schulze, J., & Mussenbrock, T. (2024). A new 2D fluid-MC hybrid approach for simulating nonequilibrium atmospheric pressure plasmas: density distribution of atomic oxygen in radio-frequency plasma jets in He/O 2 mixtures. Plasma Sources Science and Technology, 33(1), 015012. https://doi.org/10.1088/1361-6595/ad1f37 Cite
Dujko, S., Bošnjaković, D., Vass, M., Hartmann, P., Korolov, I., Pinhão, N. R., Loffhagen, D., & Donkó, Z. (2023). Scanning drift tube measurements and kinetic studies of electron transport in CO. Plasma Sources Science and Technology, 32(2), 025014. https://doi.org/10.1088/1361-6595/acbc96 Cite
Liu, Y., Vass, M., Hübner, G., Schulenberg, D., Hemke, T., Bischoff, L., Chur, S., Steuer, D., Golda, J., Böke, M., Schulze, J., Korolov, I., & Mussenbrock, T. (2023). Local enhancement of electron heating and neutral species generation in radio-frequency micro-atmospheric pressure plasma jets: the effects of structured electrode topologies. Plasma Sources Science and Technology, 32(2), 025012. https://doi.org/10.1088/1361-6595/acb9b8 Cite
Vass, M., Wang, L., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2022). Frequency coupling in low-pressure dual-frequency capacitively coupled plasmas revisited based on the Boltzmann term analysis. Plasma Sources Science and Technology, 31(11), 115004. https://doi.org/10.1088/1361-6595/ac9754 Cite
Wang, L., Vass, M., Lafleur, T., Donkó, Z., Song, Y.-H., & Schulze, J. (2022). On the validity of the classical plasma conductivity in capacitive RF discharges. Plasma Sources Science and Technology, 31(10), 105013. https://doi.org/10.1088/1361-6595/ac95c1 Cite
Wang, L., Vass, M., Donkó, Z., Hartmann, P., Derzsi, A., Song, Y.-H., & Schulze, J. (2022). Electropositive core in electronegative magnetized capacitive radio frequency plasmas. Plasma Sources Science and Technology, 31(6), 06LT01. https://doi.org/10.1088/1361-6595/ac5ec7 Cite
Vass, M., Palla, P., & Hartmann, P. (2022). Revisiting the numerical stability/accuracy conditions of explicit PIC/MCC simulations of low-temperature gas discharges. Plasma Sources Science and Technology, 31(6), 064001. https://doi.org/10.1088/1361-6595/ac6e85 Cite
Vass, M., Wilczek, S., Derzsi, A., Horváth, B., Hartmann, P., & Donkó, Z. (2022). Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 31(4), 045017. https://doi.org/10.1088/1361-6595/ac6361 Cite
Derzsi, A., Hartmann, P., Vass, M., Horváth, B., Gyulai, M., Korolov, I., Schulze, J., & Donko, Z. (2022). Electron power absorption in capacitively coupled neon–oxygen plasmas: a comparison of experimental and computational results. Plasma Sources Sci. Technol., 22. Cite
Vass, M., Wilczek, S., Schulze, J., & Donkó, Z. (2021). Electron power absorption in micro atmospheric pressure plasma jets driven by tailored voltage waveforms in He/N 2. Plasma Sources Science and Technology, 30(10), 105010. https://doi.org/10.1088/1361-6595/ac278c Cite
Wang, L., Vass, M., Donkó, Z., Hartmann, P., Derzsi, A., Song, Y.-H., & Schulze, J. (2021). Magnetic attenuation of the self-excitation of the plasma series resonance in low-pressure capacitively coupled discharges. Plasma Sources Science and Technology, 30(10), 10LT01. https://doi.org/10.1088/1361-6595/ac287b Cite
Donko, Z., Derzsi, A., Vass, M., Horváth, B., Wilczek, S., Hartmann, B., & Hartmann, P. (2021). eduPIC: an introductory particle based code for radio-frequency plasma simulation. Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/ac0b55 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2021). Collisional electron momentum loss in low temperature plasmas: on the validity of the classical approximation. Plasma Sources Science and Technology, 30(6), 065015. https://doi.org/10.1088/1361-6595/ac0486 Cite
Vass, M., Derzsi, A., Schulze, J., & Donkó, Z. (2021). Intrasheath electron dynamics in low pressure capacitively coupled plasmas. Plasma Sources Science and Technology, 30(3), 03LT04. https://doi.org/10.1088/1361-6595/abe728 Cite
Vass, M., Egüz, E., Chachereau, A., Hartmann, P., Korolov, I., Hösl, A., Bošnjaković, D., Dujko, S., Donkó, Z., & Franck, C. M. (2021). Electron transport parameters in CO 2 : a comparison of two experimental systems and measured data. Journal of Physics D: Applied Physics, 54(3), 035202. https://doi.org/10.1088/1361-6463/abbb07 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2020). Observation of dominant Ohmic electron power absorption in capacitively coupled radio frequency argon discharges at low pressure. Plasma Sources Science and Technology, 29(8), 085014. https://doi.org/10.1088/1361-6595/aba111 Cite
Pinhão, N. R., Loffhagen, D., Vass, M., Hartmann, P., Korolov, I., Dujko, S., Bošnjaković, D., & Donkó, Z. (2020). Electron swarm parameters in C 2 H 2 , C 2 H 4 and C 2 H 6 : measurements and kinetic calculations. Plasma Sources Science and Technology, 29(4), 045009. https://doi.org/10.1088/1361-6595/ab7841 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2020). Electron power absorption in low pressure capacitively coupled electronegative oxygen radio frequency plasmas. Plasma Sources Science and Technology, 29(2), 025019. https://doi.org/10.1088/1361-6595/ab5f27 Cite
Donkó, Z., Derzsi, A., Vass, M., Schulze, J., Schuengel, E., & Hamaguchi, S. (2018). Ion energy and angular distributions in low-pressure capacitive oxygen RF discharges driven by tailored voltage waveforms. Plasma Sources Science and Technology, 27(10), 104008. https://doi.org/10.1088/1361-6595/aae5c3 Cite
Vass, M., Korolov, I., Loffhagen, D., Pinhão, N., & Donkó, Z. (2017). Electron transport parameters in CO 2 : scanning drift tube measurements and kinetic computations. Plasma Sources Science and Technology, 26(6), 065007. https://doi.org/10.1088/1361-6595/aa6789 Cite
Korolov, I., Vass, M., & Donkó, Z. (2016). Scanning drift tube measurements of electron transport parameters in different gases: argon, synthetic air, methane and deuterium. Journal of Physics D: Applied Physics, 49(41), 415203. https://doi.org/10.1088/0022-3727/49/41/415203 Cite
Korolov, I., Vass, M., Bastykova, N. Kh., & Donkó, Z. (2016). A scanning drift tube apparatus for spatiotemporal mapping of electron swarms. Review of Scientific Instruments, 87(6), 063102. https://doi.org/10.1063/1.4952747 Cite