Dr.-Ing. Sebastian Wilczek

Senior Researcher

Address
Ruhr-Uni­ver­si­tät Bo­chum
Fakultät für Elektrotechnik und Informationstechnik
Angewandte Elektrodynamik und Plasmatechnik
Uni­ver­si­täts­stra­ße 150
D-44801 Bo­chum, Germany

Room
ID 1/529

Phone
+49 234 32 29845

Email
wilczek(at)aept.rub.de


Publications

Wang, X.-K., Korolov, I., Wilczek, S., Masheyeva, R., Liu, Y.-X., Song, Y.-H., Hartmann, P., Donkó, Z., & Schulze, J. (2024). Hysteresis in radio frequency capacitively coupled CF4 plasmas. Plasma Sources Science and Technology, 33(8), 085001. https://doi.org/10.1088/1361-6595/ad5eb9 Cite
Jüngling, E., Wilczek, S., Mussenbrock, T., Böke, M., & Von Keudell, A. (2024). Plasma sheath tailoring by a magnetic field for three-dimensional plasma etching. Applied Physics Letters, 124(7), 074101. https://doi.org/10.1063/5.0187685 Cite
Böddecker, A., Passmann, M., Wilczek, S., Schücke, L., Korolov, I., Skoda, R., Mussenbrock, T., Gibson, A. R., & Awakowicz, P. (2023). Interactions Between Flow Fields Induced by Surface Dielectric Barrier Discharge Arrays. Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-023-10406-y Cite
Nösges, K., Klich, M., Derzsi, A., Horváth, B., Schulze, J., Brinkmann, R. P., Mussenbrock, T., & Wilczek, S. (2023). Nonlocal dynamics of secondary electrons in capacitively coupled radio frequency discharges. Plasma Sources Science and Technology, 32(8), 085008. https://doi.org/10.1088/1361-6595/ace848 Cite
Eremin, D., Engel, D., Krüger, D., Wilczek, S., Berger, B., Oberberg, M., Wölfel, C., Smolyakov, A., Lunze, J., Awakowicz, P., Schulze, J., & Brinkmann, R. P. (2023). Electron dynamics in planar radio frequency magnetron plasmas: I. The mechanism of Hall heating and the µ-mode. Plasma Sources Science and Technology, 32(4), 045007. https://doi.org/10.1088/1361-6595/acc481 Cite
Vass, M., Wang, L., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2022). Frequency coupling in low-pressure dual-frequency capacitively coupled plasmas revisited based on the Boltzmann term analysis. Plasma Sources Science and Technology, 31(11), 115004. https://doi.org/10.1088/1361-6595/ac9754 Cite
Klich, M., Löwer, J., Wilczek, S., Mussenbrock, T., & Brinkmann, R. P. (2022). Validation of the smooth step model by particle-in-cell/Monte Carlo collisions simulations. Plasma Sources Science and Technology, 31(4), 045014. https://doi.org/10.1088/1361-6595/ac5dd3 Cite
Vass, M., Wilczek, S., Derzsi, A., Horváth, B., Hartmann, P., & Donkó, Z. (2022). Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 31(4), 045017. https://doi.org/10.1088/1361-6595/ac6361 Cite
Vass, M., Wilczek, S., Schulze, J., & Donkó, Z. (2021). Electron power absorption in micro atmospheric pressure plasma jets driven by tailored voltage waveforms in He/N 2. Plasma Sources Science and Technology, 30(10), 105010. https://doi.org/10.1088/1361-6595/ac278c Cite
Donko, Z., Derzsi, A., Vass, M., Horváth, B., Wilczek, S., Hartmann, B., & Hartmann, P. (2021). eduPIC: an introductory particle based code for radio-frequency plasma simulation. Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/ac0b55 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2021). Collisional electron momentum loss in low temperature plasmas: on the validity of the classical approximation. Plasma Sources Science and Technology, 30(6), 065015. https://doi.org/10.1088/1361-6595/ac0486 Cite
Klich, M., Wilczek, S., Janssen, J. F. J., Brinkmann, R. P., Mussenbrock, T., & Trieschmann, J. (2021). Ion dynamics in capacitively coupled argon–xenon discharges. Plasma Sources Science and Technology, 30(6), 065019. https://doi.org/10.1088/1361-6595/ac02b0 Cite
Hartmann, P., Wang, L., Nösges, K., Berger, B., Wilczek, S., Brinkmann, R. P., Mussenbrock, T., Juhasz, Z., Donkó, Z., Derzsi, A., Lee, E., & Schulze, J. (2021). Control of electron velocity distributions at the wafer by tailored voltage waveforms in capacitively coupled plasmas to compensate surface charging in high-aspect ratio etch features. Journal of Physics D: Applied Physics, 54, 255202. https://doi.org/10.1088/1361-6463/abf229 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2020). Observation of dominant Ohmic electron power absorption in capacitively coupled radio frequency argon discharges at low pressure. Plasma Sources Science and Technology, 29(8), 085014. https://doi.org/10.1088/1361-6595/aba111 Cite
Hartmann, P., Wang, L., Nösges, K., Berger, B., Wilczek, S., Brinkmann, R. P., Mussenbrock, T., Juhasz, Z., Donkó, Z., Derzsi, A., Lee, E., & Schulze, J. (2020). Charged particle dynamics and distribution functions in low pressure dual-frequency capacitively coupled plasmas operated at low frequencies and high voltages. Plasma Sources Science and Technology, 54, 075014. https://doi.org/10.1088/1361-6595/ab9374 Cite
Wilczek, S., Schulze, J., Brinkmann, R. P., Donkó, Z., Trieschmann, J., & Mussenbrock, T. (2020). Electron dynamics in low pressure capacitively coupled radio frequency discharges. Journal of Applied Physics, 127(18), 181101. https://doi.org/10.1063/5.0003114 Cite
Vass, M., Wilczek, S., Lafleur, T., Brinkmann, R. P., Donkó, Z., & Schulze, J. (2020). Electron power absorption in low pressure capacitively coupled electronegative oxygen radio frequency plasmas. Plasma Sources Science and Technology, 29(2), 025019. https://doi.org/10.1088/1361-6595/ab5f27 Cite
Krüger, F., Wilczek, S., Mussenbrock, T., & Schulze, J. (2019). Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches. Plasma Sources Science and Technology, 28(7), 075017. https://doi.org/10.1088/1361-6595/ab2c72 Cite
Wilczek, S., Trieschmann, J., Schulze, J., Donkó, Z., Brinkmann, R. P., & Mussenbrock, T. (2018). Disparity between current and voltage driven capacitively coupled radio frequency discharges. Plasma Sources Science and Technology, 27(12), 125010. https://doi.org/10.1088/1361-6595/aae5c1 Cite
Schulze, J., Donkó, Z., Lafleur, T., Wilczek, S., & Brinkmann, R. P. (2018). Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation. Plasma Sources Science and Technology, 27(5), 055010. https://doi.org/10.1088/1361-6595/aabebc Cite
Daksha, M., Derzsi, A., Wilczek, S., Trieschmann, J., Mussenbrock, T., Awakowicz, P., Donkó, Z., & Schulze, J. (2017). The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas. Plasma Sources Science and Technology, 26(8), 085006. https://doi.org/10.1088/1361-6595/aa7c88 Cite
Wilczek, S., Trieschmann, J., Eremin, D., Brinkmann, R. P., Schulze, J., Schuengel, E., Derzsi, A., Korolov, I., Hartmann, P., Donkó, Z., & Mussenbrock, T. (2016). Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas. Physics of Plasmas, 23(6), 063514. https://doi.org/10.1063/1.4953432 Cite
Wilczek, S., Trieschmann, J., Schulze, J., Schuengel, E., Brinkmann, R. P., Derzsi, A., Korolov, I., Donkó, Z., & Mussenbrock, T. (2015). The effect of the driving frequency on the confinement of beam electrons and plasma density in low-pressure capacitive discharges. Plasma Sources Science and Technology, 24(2), 024002. https://doi.org/10.1088/0963-0252/24/2/024002 Cite